

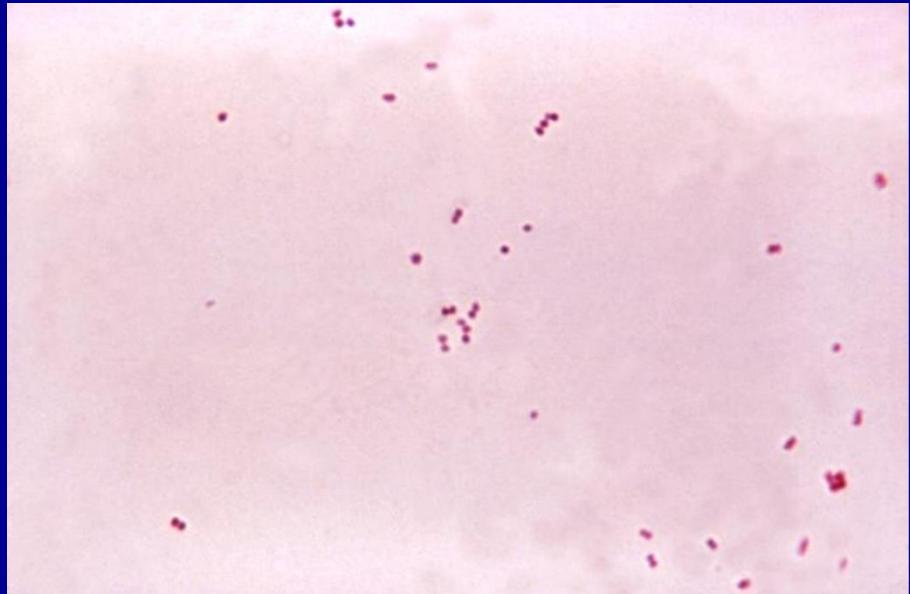
MENINGOCOCCAL EPIDEMIOLOGY AND VACCINE RECOMMENDATIONS IN THE UNITED STATES

Donna Curtis, MD, MPH
Assistant Professor, Pediatric Infectious Diseases
University of Colorado School of Medicine

Disclosures

Donna Curtis:

- Sanofi-Pasteur provides influenza vaccine and will run one serum test for an investigator-initiated study for which I am the PI.
- No other relevant disclosures


Objectives

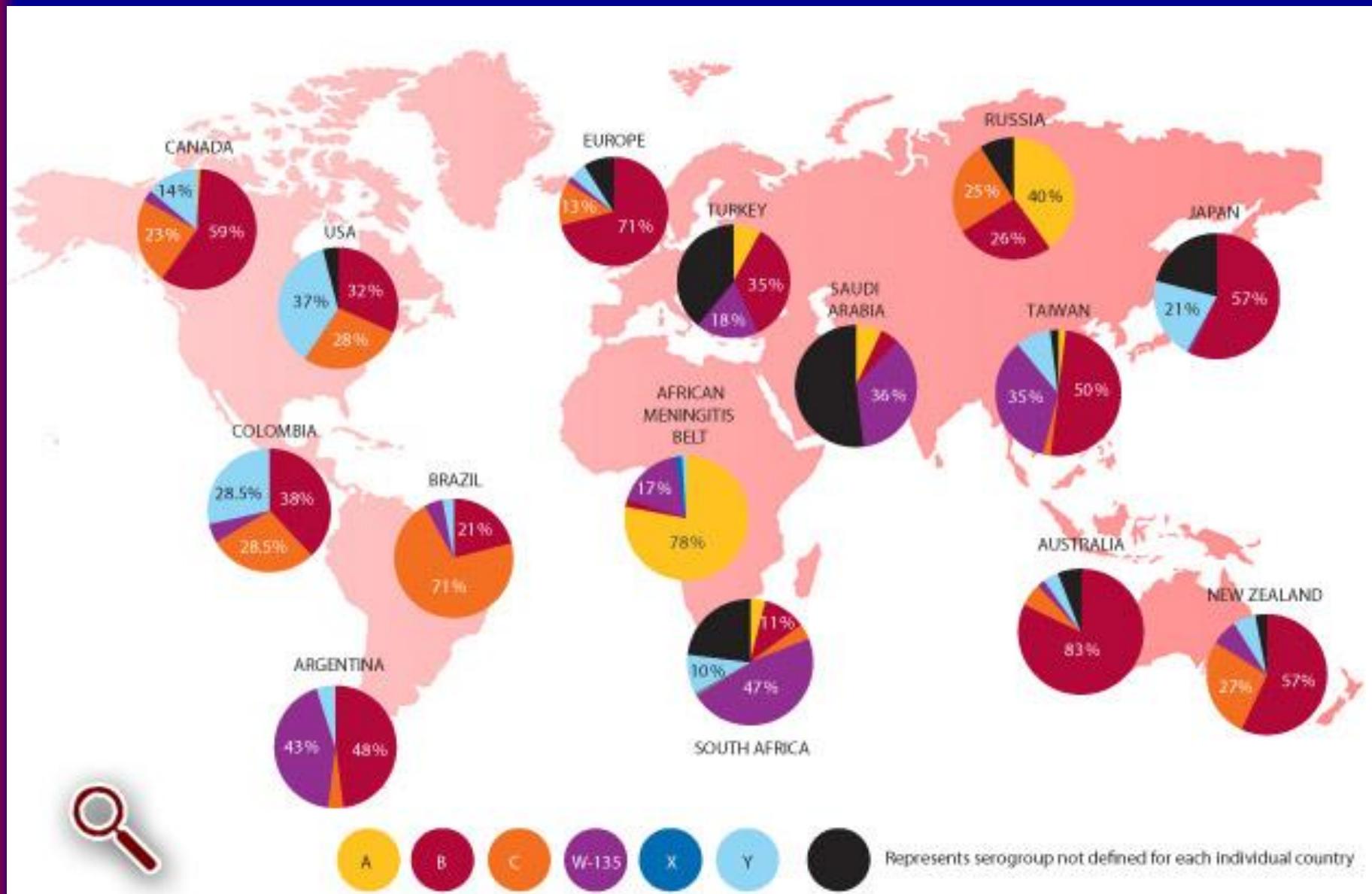
- Describe the epidemiology of meningococcal disease in the United States.
- Describe current CDC vaccine recommendations for meningococcal disease, including recommendations for recently licensed meningococcal-B vaccines.

Outline

- Meningococcal Epidemiology
- Vaccine recommendations
 - CDC recommended vaccine schedule for A, C, W, Y serogroups
 - Group B vaccines
 - Why they are different
 - Review of safety and immunogenicity of licensed serogroup B meningococcal vaccines
 - ACIP/CDC recommendations for MenB vaccines

Meningococcal Disease and Epidemiology

Neisseria meningitidis


- Gram-negative, aerobic diplococcus polysaccharide capsule
- 5 serogroups cause most disease worldwide – A, B, C, W, and Y
 - B, C, Y cause most disease in the US
- Carried asymptotically in the nasopharynx of 1 in 10 people
 - Carriage can be as high as 30% in high-risk groups such as adolescents

CDC; Granoff DM, et al. In: *Vaccines*, 2004:959;
Neal KR, et al. *BMJ* 2000;320:846

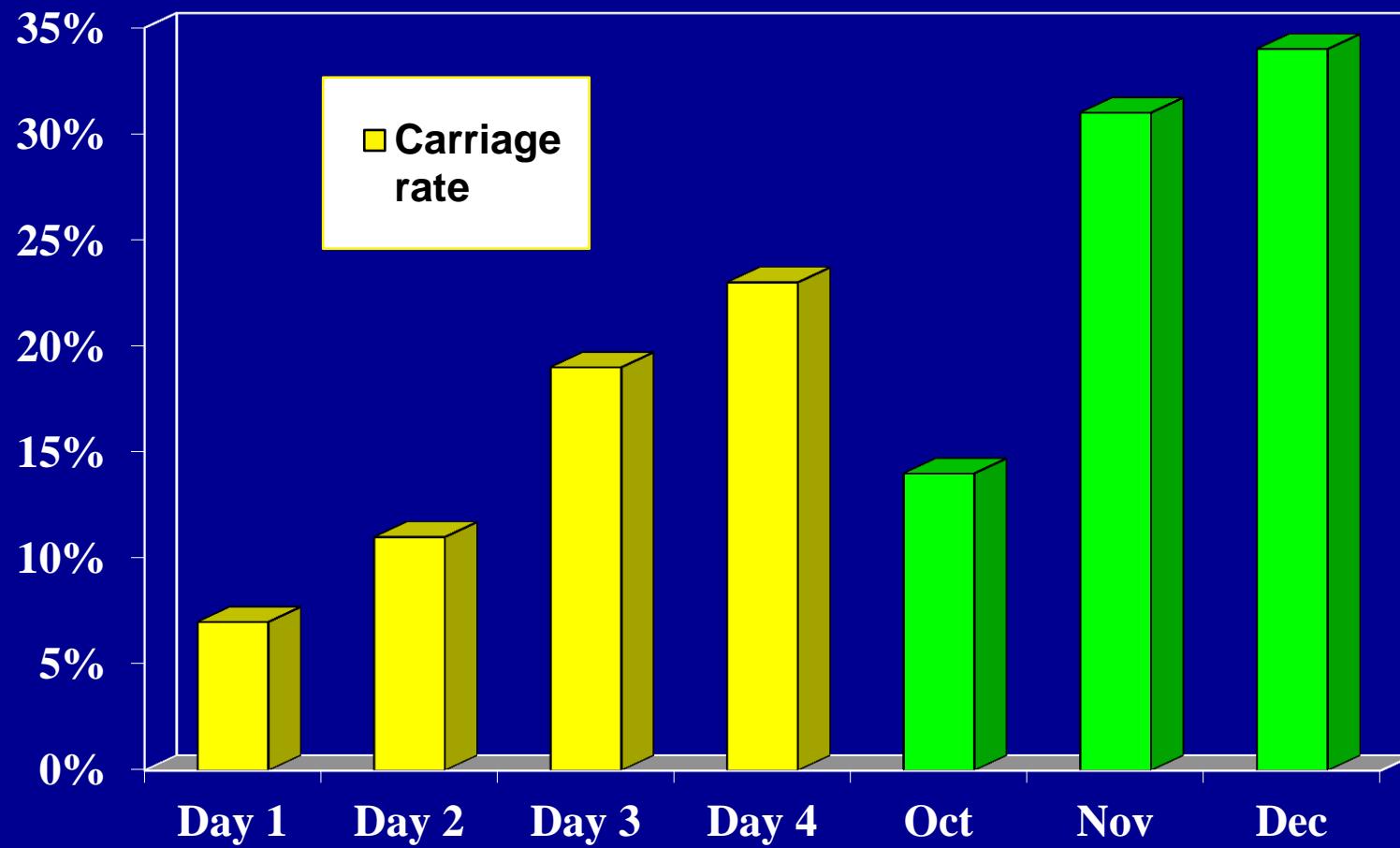
Clinically Significant Meningococcal Serogroups

Serogroup	Characteristics
A	Primarily Sub-Saharan Africa; uncommon in the Americas and Europe
B	Causes ~50% of US infant disease; Causes substantial percentage of cases in US, Australia, and Europe;
C	Causes a substantial percentage of cases in the US, Australia, and Europe; associated with community and school based outbreaks
W-135	Uncommon worldwide; Outbreaks associated with Hajj pilgrimage, Africa
X	Cause of outbreaks in Sub-Saharan Africa; no vaccine available
Y	Causes a substantial percent of cases in the US and other countries in the Americas

Global distribution of meningococcal disease by serogroup, www.meningitisinfo.com

Neisseria meningitidis transmission and epidemiology

- Transmitted person-to-person:
 - via sharing/exchange of respiratory or throat secretions during close or lengthy contact
- Most cases are sporadic
 - <5% being associated with an outbreak
- Household members have 500-800 times the rate of disease as the general population


Neisseria meningitidis: Risk factors for invasive disease

- Host factors:
 - Terminal complement pathway deficiency
 - Asplenia
 - Age – infants, adolescents and young adults, adults >65 years at highest risk
- Environmental factors:
 - Contacts:
 - Outbreaks
 - Household or close contact exposure
 - Crowding (Hajj)
 - Travel (meningitis belt in Africa)
 - Concurrent upper respiratory tract infection; smoking (active/passive)

Why increased incidence of meningococcal disease in adolescence and young adulthood?

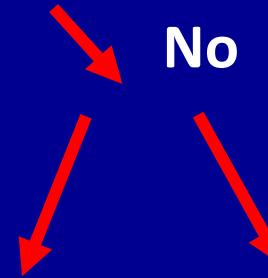
- Increased person to person transmission due to crowded living conditions and behaviors
 - Living in dormitories
 - Going to bars and parties
 - More than one kissing partner
 - Sharing cups, beverages
 - Sports teams
 - Smoking

Carriage Rate Of Meningococcus in College Students

Pathophysiology of invasive disease

Organism Enters Nasopharynx

Colonization established


Specific bactericidal antibody present?

Yes

No Disease

No

**Development of Antibody
= No disease**

**Organism gains access
to vascular space =
Disease**

Meningococcal disease

- With the success of vaccination against *Haemophilus influenzae*, *Streptococcus pneumoniae* and *Neisseria meningitidis* are now the leading causes of bacterial meningitis in the U.S
 - ≥50% of meningococcal disease presents as meningitis
 - ~20% presents as sepsis (meningococcemia)
- Also causes:
 - pneumonia, arthritis, and rarely other localized infections
- Case fatality rate for invasive disease: 10-15%

Infants <1 Year of Age Show Highest Estimated Incidence 5.38: United States, 1998-2007

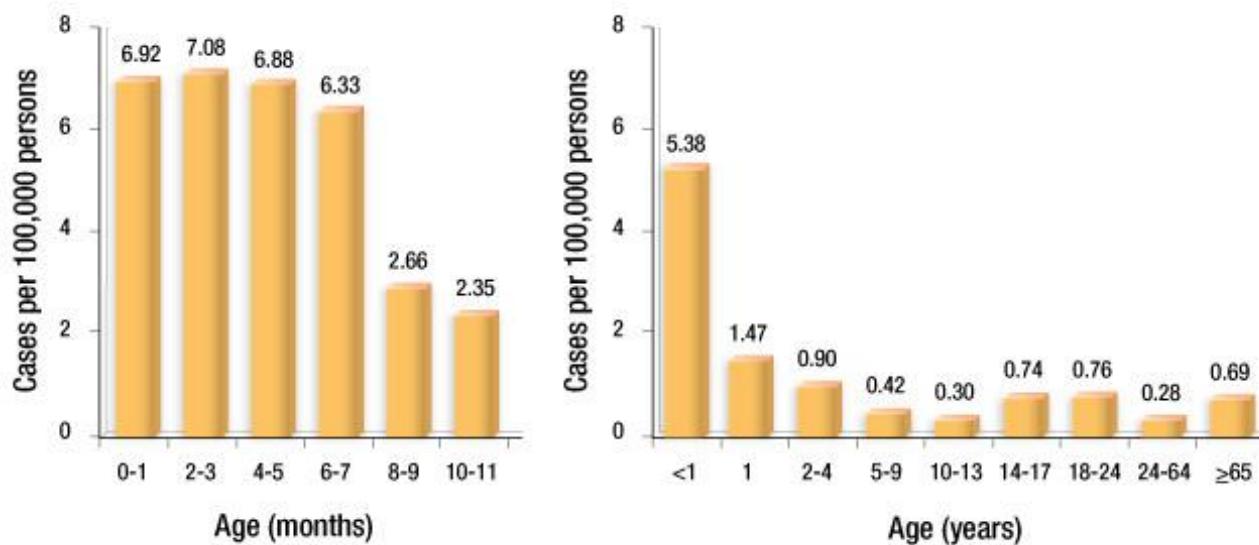
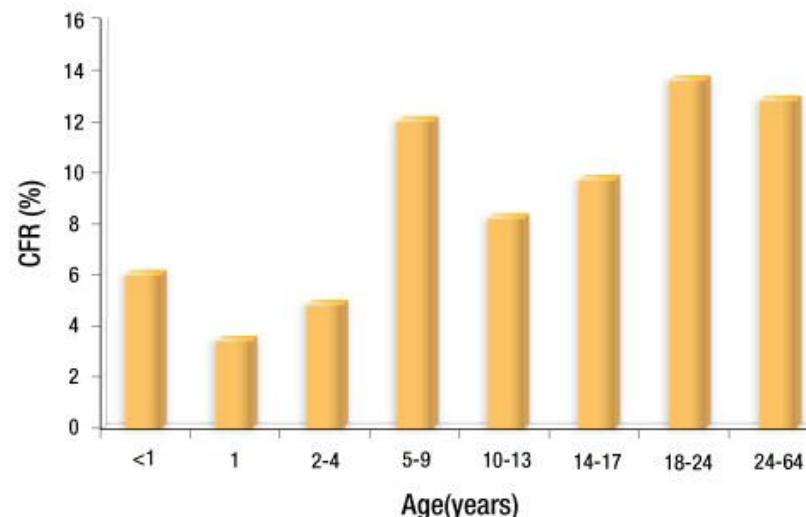



Figure 13. Estimated Incidence of Meningococcal Disease in Infants, Adolescents and Adults:
United States, 1998-2007¹

Estimated Average Annual Cases, Deaths, and Sequelae by Age Group and Serogroup, 2009–2013

	Age Group	Cases ¹	Deaths ²	Sequelae ³
Serogroup B	<5 years	74–94	7-14	7-19
	11-24 years	54–67	5-10	5-13
	All ages	203–260	20-39	20-52
Serogroups C & Y	<5 years	34–43	3-6	3-9
	11-24 years	62–77	6-12	6-15
	All ages	307–393	31-59	31-79

- The majority (~80%) of serogroup B cases that occur in 11–24 year olds occur in older adolescents and young adults aged 16–24 years

¹Range in estimated cases: Low=NNDSS data supplemented with additional serogroup data from ABCs and state health departments, High= NNDSS data supplemented with additional serogroup data from ABCs and state health departments + proportion serogroup B or serogroup C & Y applied to cases with unknown serogroup.

²10-15% case fatality ratio

³10-20% cases with long term sequelae

Meningococcal disease sequelae, US

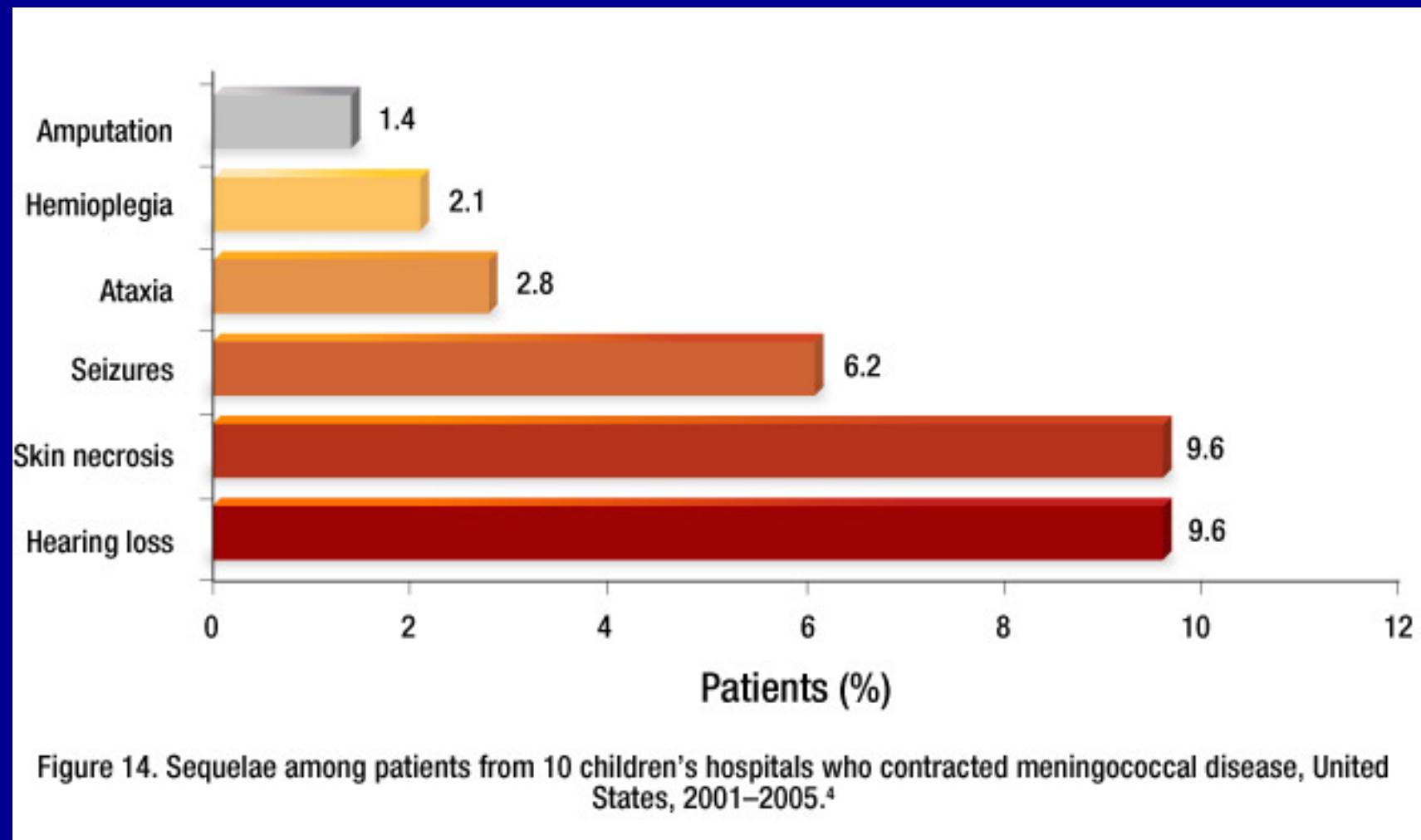
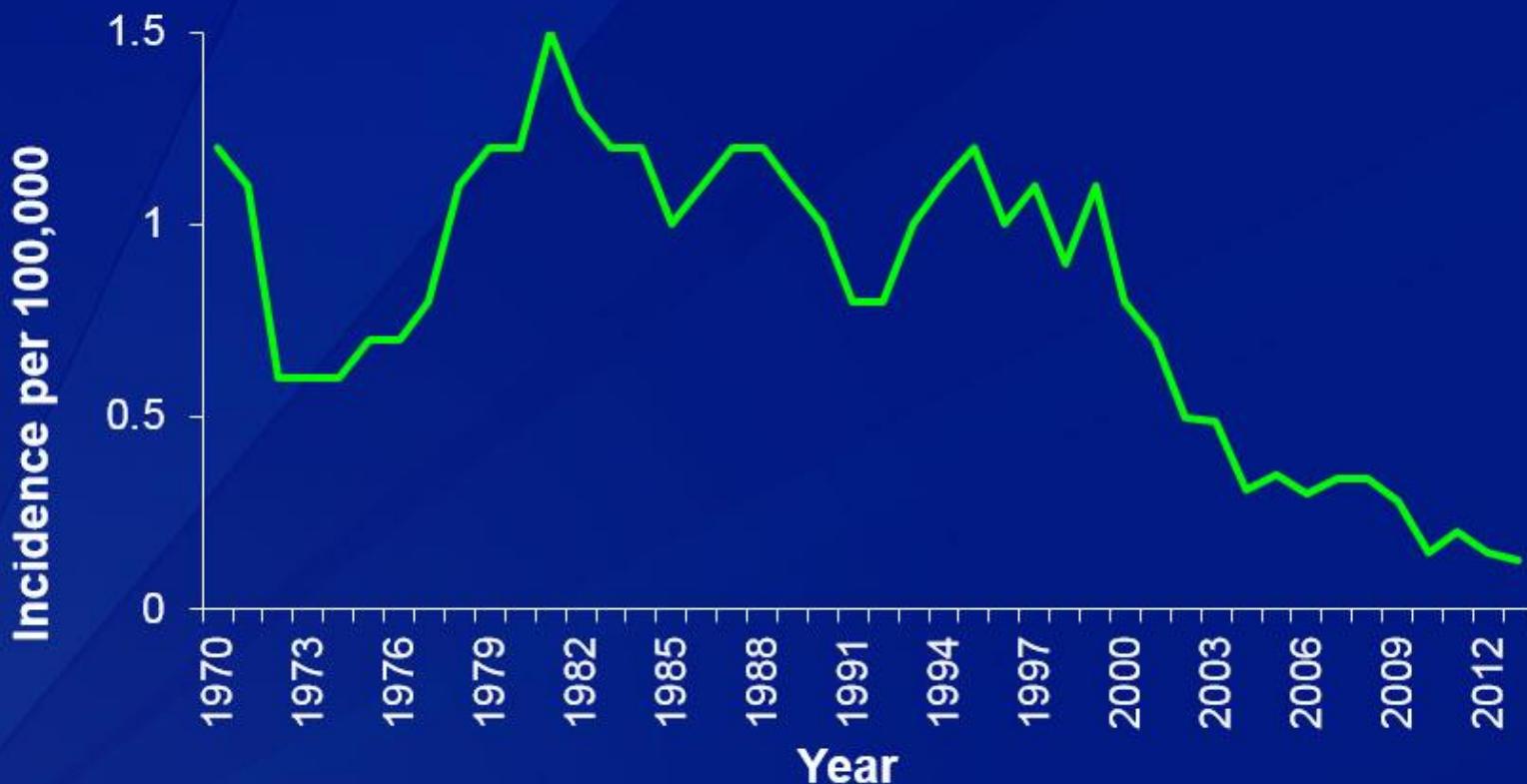
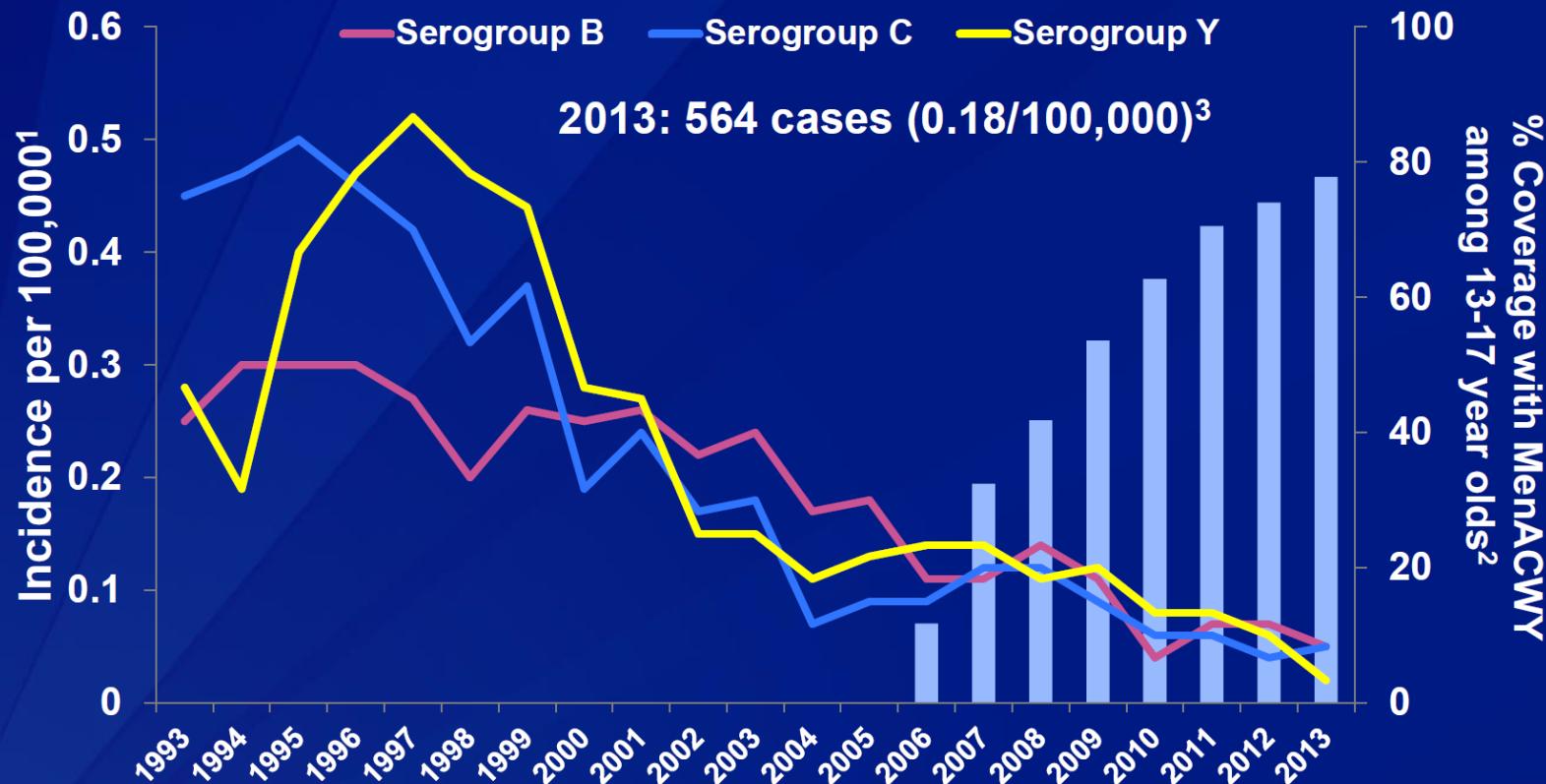



Figure 14. Sequelae among patients from 10 children's hospitals who contracted meningococcal disease, United States, 2001–2005.⁴

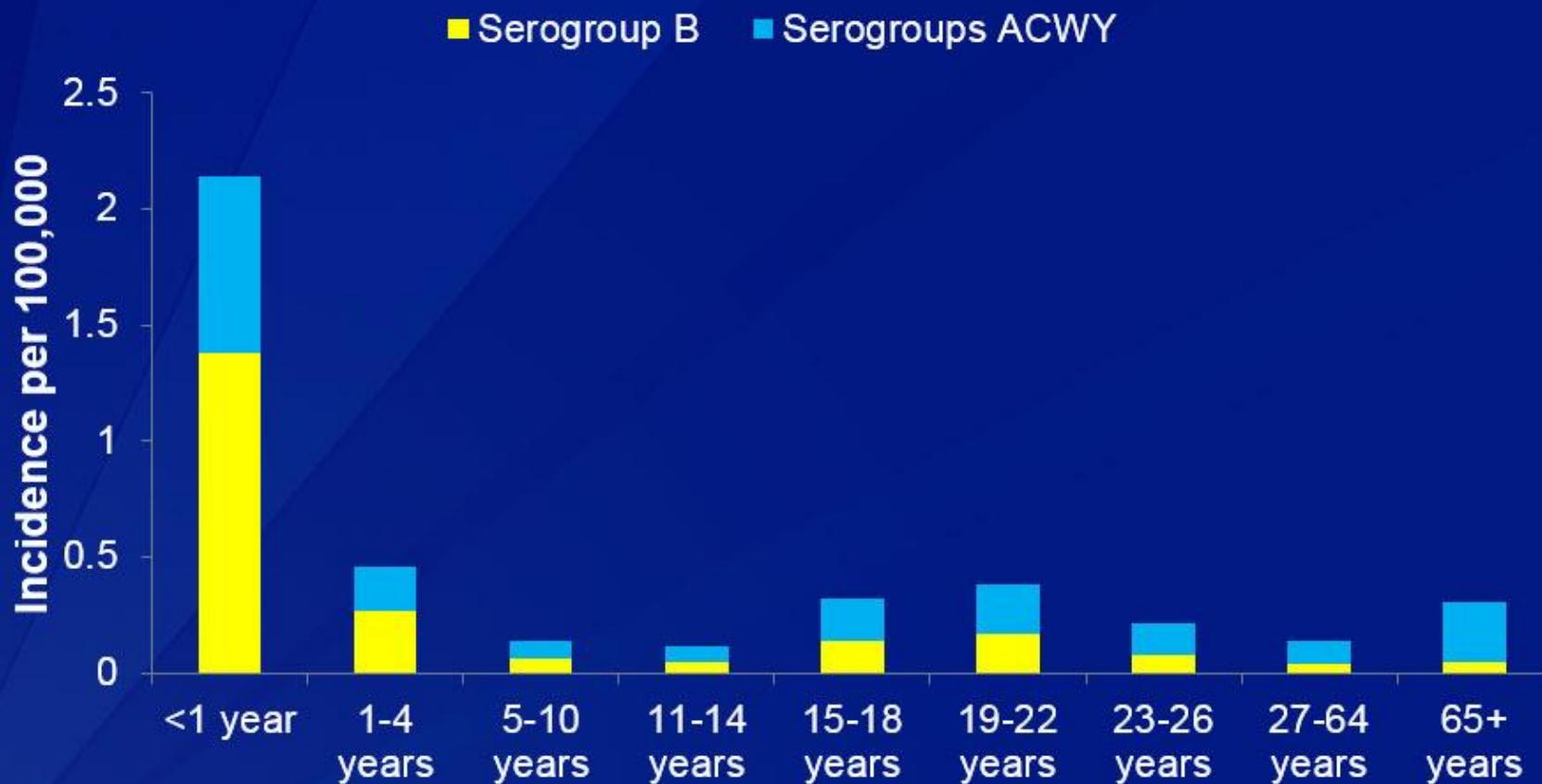

Meningococcal Disease Incidence, United States, 1970-2013

SOURCE: CDC. 1970-1996 National Notifiable Diseases Surveillance System, 1997-2013 Active Bacterial Core surveillance
estimated to U.S. population

Meningococcal Incidence and Vaccine Coverage, 1993-2013

Meningococcal Incidence in All Ages by Serogroup and Adolescent MenACWY Vaccine Coverage, 1993-2013

¹Source: ABCs cases from 1993-2013 estimated to the U.S. population with 18% correction for under reporting


²National Immunization Survey – Teen; 2006-2013

³NNDS 2013 final case count

Epidemiology of Serogroup B Meningococcal Disease

- With changing background epidemiology and widespread use of meningococcal ACWY conjugate vaccines (MenACWY) in adolescents and young adults
 - Serogroup B now causes 40% of all meningococcal disease cases in 11-24 year olds
 - Approximately 50-70% of cases of serogroup B disease in 18-23 year olds occur in college students

Meningococcal Incidence by Serogroup and Age-Group, United States, 2005-2013

SOURCE: CDC. National Notifiable Diseases Surveillance System with additional serogroup data from Active Bacterial Core surveillance and state health departments.

Unknown serogroup (25%) and other serogroups (8%) excluded

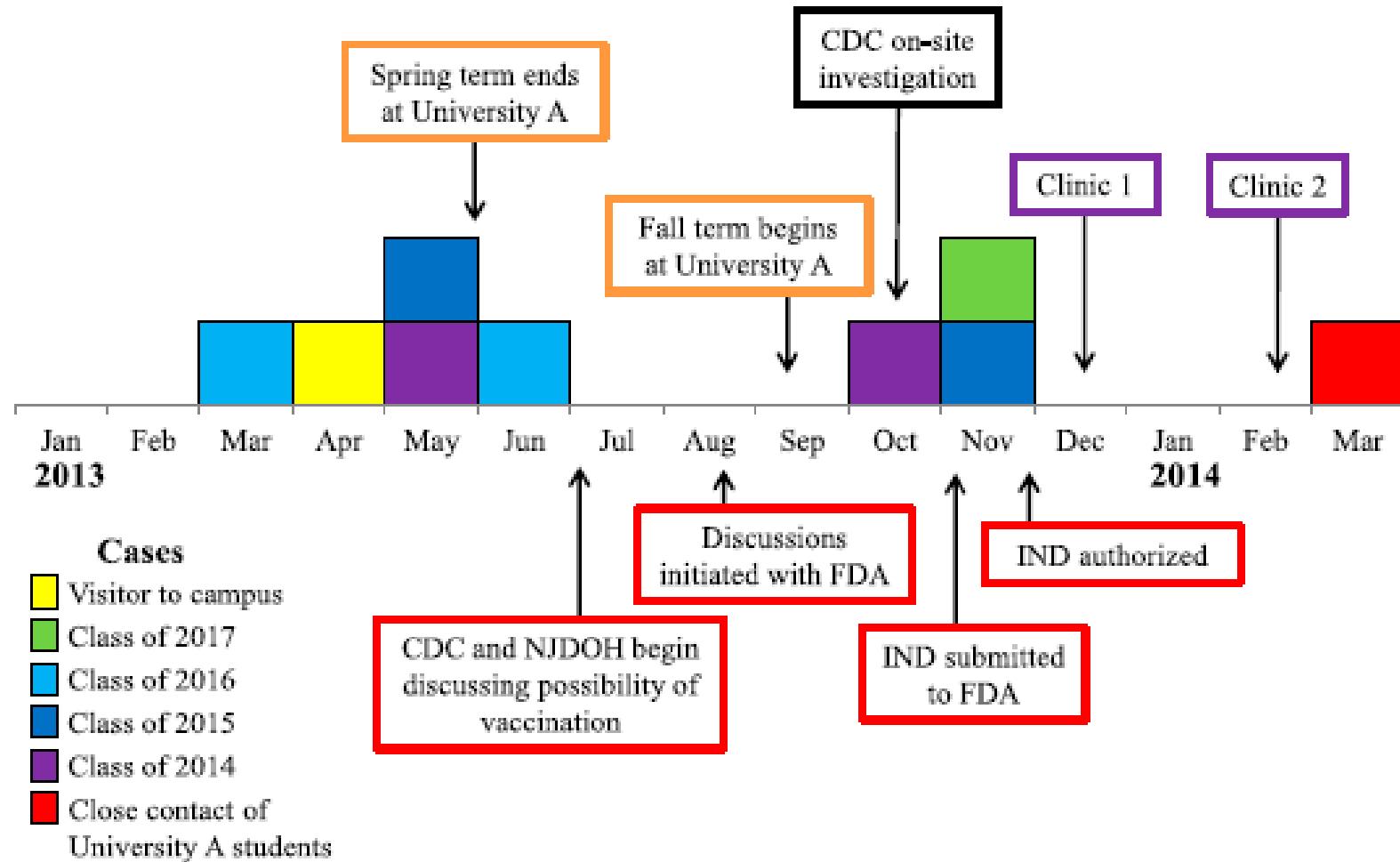
DESCRIPTION OF THE OUTBREAK THAT PRECEDED LICENSURE OF MENB VACCINES

Princeton University Outbreak

- March 2013, Princeton student developed serogroup B meningococcal disease while on spring break with her family in another state
- Several weeks later, a prospective student developed serogroup B meningococcal disease—cases were not recognized as connected
- A few weeks later, a second Princeton student was diagnosed with mening B
- New Jersey Health Dept recognized there were 3 cases related to Princeton
 - Widespread education/hygiene campaign began at Princeton on ways to reduce transmission

Princeton Outbreak

- 4th case was identified and genetic testing showed all isolates identical
 - Outbreak was declared
- End of the school year (2013) approaching
 - Estimated 20,000 people coming to campus for graduation activities and a reunion
 - No new cases at end of semester
- June 2013, 5th case occurred in a Princeton student traveling with other students in Greece


Princeton Outbreak

- July 2013, Princeton and CDC discussed obtaining IND for meningococcal serogroup B vaccine (MenB) to interrupt outbreak
- Fall classes started
 - Hygiene and education campaign continued
 - 3 more cases occurred (#6-8)
- IND approved in late November, just prior to 8th case
 - Vaccine clinics organized—1st one occurred in early Dec; 2nd dose clinics started in Feb
 - By May 14, 2014, 94.9% of the target population had received at least 1 dose of the vaccine and 89.1% had received both doses

Princeton Outbreak

- March 2014 a Drexel University student died of invasive mening B (same strain) after contact with a group of students from Princeton who traveled to Drexel for a social event (#9)
 - Most of the Princeton students had received 2 doses of vaccine
- Princeton began offering serogroup B mening vaccine to incoming freshman in fall 2014
- No students receiving the 2 dose vaccine developed meningococcal disease

Use of Serogroup B Vaccine

FIGURE 1

Timeline of outbreak cases and response activities.

Princeton Outbreak

- No cases in students receiving 1 or more doses of MenB suggests the vaccine was effective in protecting against disease in vaccinees
- 9th Case in the Drexel student after vaccine campaigns suggests
 - Strain was still circulating
 - Carriage not completely eliminated by vaccination

CDC Recommendations for A, C, Y, W Meningococcal Vaccines

Licensed vaccines against A, C, W, Y

Type of vaccine	Name	Serogroups included	Minimum age of approval*
Conjugate	MenACWY-D (Menactra)	A, C, W, Y	9 mos
Conjugate	MenACWY-CRM (Menveo)	A, C, W, Y	2 mos
Conjugate	Hib-MenCY (MenHibrix)	A, C + Hib	6 weeks
Polysaccharide	MPSV4 (Menomune)	A, C, W, Y	2 years

* This is the youngest age for which the vaccine is approved. This age does not necessarily correlate with ACIP/CDC recommendations.

CDC vaccine recommendations for children

- Routine recommendations, quadrivalent conjugated vaccines (MCV4 = MenACWY-D or MenACWY-CRM):
 - One dose at 11-12 years
 - One dose at 16 years of age (booster)
- Special groups – refer to most updated CDC vaccine schedule for full details:
 - HIV-positive: give 2 doses as primary vaccine
 - Anatomic or functional asplenia
 - Children with persistent complement component deficiency includes:
 - persons with inherited or chronic deficiencies in C3, C5-9, properdin, factor D, factor H, or taking eculizumab (Soliris®)
 - Travel to country where meningococcal disease is hyperendemic or epidemic (i.e. African meningitis belt or Hajj)
 - Community outbreaks with a vaccine serogroup

CDC vaccine recs for adults

High-risk adult groups:

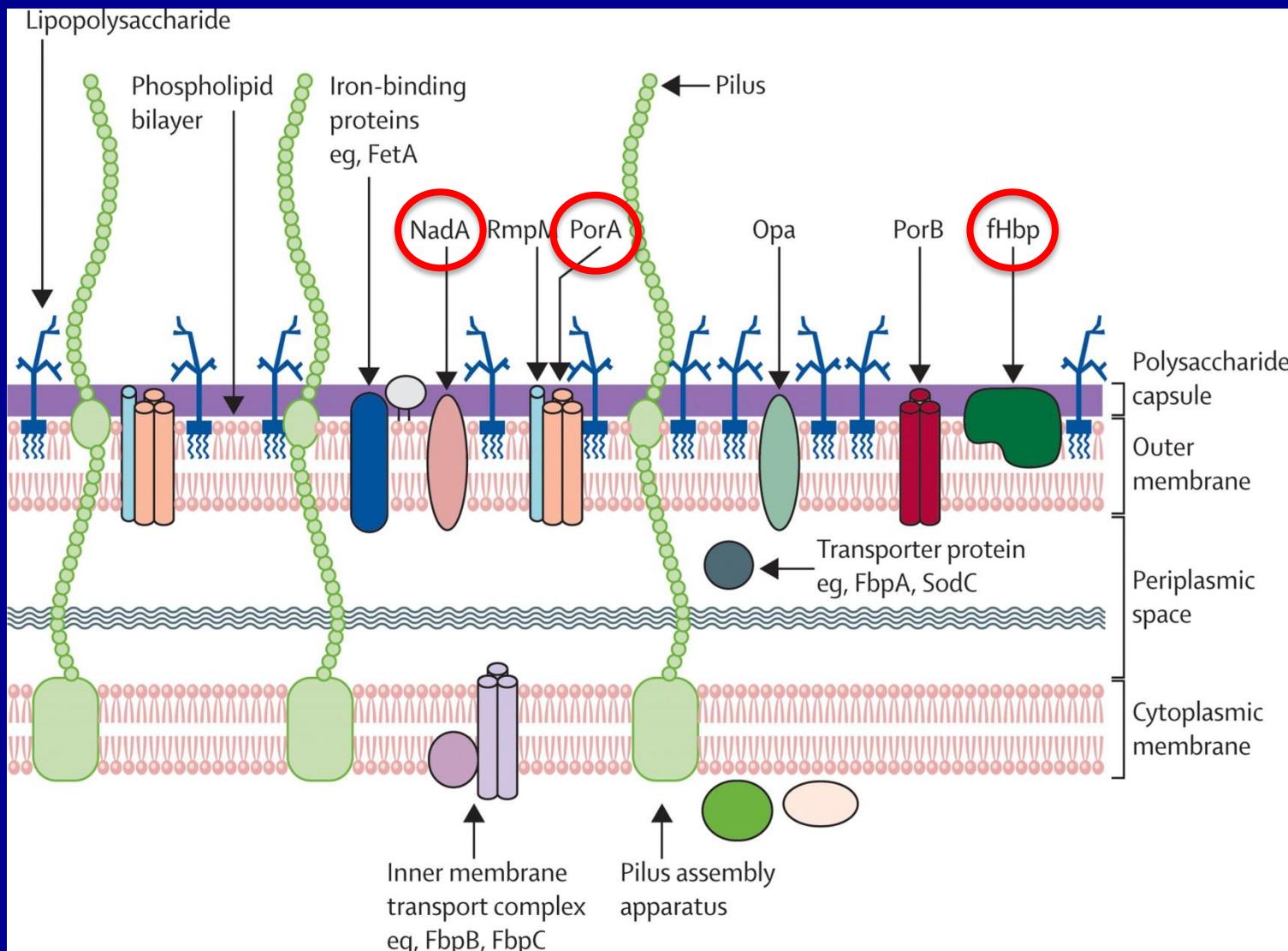
- Complement component deficiency (same as kids)
- Functional or anatomic asplenia
- Profession with routine exposure to *Neisseria meningitidis*
- Traveling or residing in countries in which the disease is common
- At increased risk for a serogroup A, C, W or Y meningococcal disease outbreak
- First-year college student living in a residence hall
- Military recruits

CDC vaccine recs for adults

Vaccines:

- MCV4 should be used through age 55
- Only the polysaccharide vaccine (MPSV4, Menomune) is approved for adults ≥ 65 yrs
- Adults at increased risk because of complement component deficiencies and persons with functional or anatomic asplenia should receive a two-dose primary series 2 months apart and then get a booster dose every 5 years.

Serogroup B Meningococcal Vaccines


Challenges with Meningococcal Serogroup B Vaccines

- Polysialic acid is present in the polysaccharide capsule of Serogroup B
 - Antigenically similar to human neuronal tissue
 - Seen as a “self” antigen
 - Poorly immunogenic
 - Potential to induce autoimmune response
- Current vaccine development focuses on
 - Use of subcapsular antigens which are
 - Surface exposed
 - Conserved
 - Induce bactericidal activity

Outer Membrane Antigens

- Factor H Binding Proteins (FHbp)
 - Allows bacteria to evade complement mediated lysis
- NadA
 - Allows bacteria to adhere and invade epithelial cells
- Neisseria Heparin Binding Antigen (NHBA)
 - Promotes bacterial survival in the blood
- Outer membrane vesicles (OMV)
 - Buds from the cell membrane
 - Important in protein trafficking and secretion
 - Porin protein, PorA, elicits strong serum bactericidal antibody in children and adults

Figure 1

Meningococcal B Vaccines Approved in the U.S.

- MenB-FHbp (Trumenba, Pfizer) for ages 10-25 years
 - 3 dose series at 0, 2, 6 months
 - Component: factor H binding proteins, subfamily A/v2,3 and B/v1 (bivalent)
 - Licensed in US October 29, 2014
- MenB-4C (Bexsero, Novartis) for ages 10-25 years
 - 2 dose series at 0, \geq 1 month
 - 4 component vaccine (-4C): fHbp subfamily B/v1, NhbA, NadA, PorA1.4
 - Licensed in US January 23, 2015
 - Licensed in >37 countries for persons \geq 2 mos of age

Safety

Licensed Meningococcal B Vaccines*

	MenB-4C (Bexsero)	MenB-FHbp (Trumenba)
Indicated ages	10-25 years	10-25 years
Schedule	2 doses; 0, 1-6 mo	3 doses; 0, 2, 6 mo apart
Most Common Reported Adverse Reactions after dose 1	Injection site pain Erythema Induration Fever >38°C Headache Fatigue Muscle Pain Arthralgia	Injection site pain Erythema Induration Fever >38°C Headache Fatigue Chills Muscle Pain Arthralgia

*Package insert information for MenB-4C and MenB-FHbp, 2015

Safety Data Outside Clinical Trials

- MenB-4C
 - 17,000 persons vaccinated under IND for University outbreaks
 - 40,000 vaccinated in Quebec in response to outbreak (2 mo-20 years of age)
 - >37 countries have licensed the vaccine
- MenB-FHBP
 - Safety data collected during recent outbreak responses at Providence college, University of Oregon

Safety Monitoring

- **Vaccine Adverse Event Reporting System (VAERS)**
 - Few reports received as of 10/05/2015
 - MenB-FHbp n=65
 - MenB-4C n=21
 - No safety signals detected to date
- **Vaccine Safety Datalink (VSD)**
 - Few doses administered in the VSD population to date
 - Safety assessment can begin when a larger number of doses have accumulated

MenB-4C: Evidence of Harms Post Vaccination Campaign SAEs Data

- **59,091 participants received at least one dose of MenB-4C**
 - 60 SAEs were reported
 - 3 SAEs* determined to be related to the vaccine
 - 1 death** reported - unrelated to vaccine

* Rhabdomyolysis, anaphylaxis and fever

**Cause of death was drowning

MenB-FHbp: Evidence of Harms

- **11,338 participants received at least one dose of MenB-FHbp**
 - 190 SAEs were reported in the vaccine group
 - 7 SAEs* determined to be related to vaccine
 - 1 death** reported - unrelated to vaccine

* Pyrexia, vomiting, vertigo, chills, headache, anaphylaxis and neutropenia

**Death due to road accident

Licensed MenB Vaccines-Safety

- Majority of local and systemic reactions are mild to moderate and transient
 - Pain at the injection site is the most common adverse event reported
 - Local reactions more common in adolescents than other vaccines used in this age group
- SAEs rare and similar to other vaccines
 - Anaphylaxis reported in 2 cases (1 each MenB-4C and 1 MenB-FHbp)
 - Low disease burden should be considered
- No concerning pattern of AEs yet identified

Immunogenicity

Immunogenicity

- Studies starting in the late 1960s showing protection in infants from maternal antibody and then efficacy studies from the polysaccharide vaccine (MPSV4) have given us immune correlates of protection
- For the FDA licensing endpoints, immunogenicity is measured by serum bactericidal antibodies as an immune correlate of protection against a small number of serogroup B strains
 - Use a functional assay called serum bactericidal activity

Immunogenicity

- Immunogenicity assessed by the
 - Proportion of subjects who achieved ≥ 4 fold increase in hSBA titer for each strain tested and
 - hSBA indicates that human serum was used in the assay as a source of the complement
 - Proportion of subjects who achieved a titer \geq LLOQ (lower limit of quantitation) of the assay for all strains (composite response)

Short-term immunogenicity

- MenB-4C (Bexsero)
 - At 1 mo following vaccination, composite response to 3 strains tested:
 - 90-94% of Chilean adolescents
 - 88% of university students in the UK (95% CI 82-93%)
 - 63% of adolescents in Australia and Canada
- MenB-FHbp (Trumenba)
 - At 1 mo following vaccination, composite response to 4 strains tested:
 - 81-83% of adolescents in the US
 - Similar results in European adolescents

Antibody Persistence Data

- MenB-4C
 - 11-mo follow-up (UK university students)
 - 66% had protective antibody after 2 doses (95% CI 58-72%)
 - 18-24 mo follow-up (Chilean adolescents)
 - 77%-94% had protective AB against the 3 antigens tested (fHBP, NAD, OMV) after 2 doses
- MenB-FHbp
 - 48 mo follow-up
 - >50% of vaccinees have hSBA and titers >LLOQ against 3 reference strains amongs adolescents in Australia, Spain and Poland

Concomitant Vaccine Administration

- 4MenB-4C (Bexsero)
 - Studies with concomitant vaccines in infants and children outside the US – no clinically significant interaction
 - No adolescent data
- MenB-FHbp (Trumenba)
 - 3 adolescent trials evaluating concomitant administration with HPV-4, MCV, Tdap, IPV
 - No immunologic interference with HPV 6,11,16, MenACWY, Tdap, IPV antigens observed
 - Possible decrease in HPV18
 - Reassuring for non-inferiority

CDC, MMWR October 23, 2015

Potential cases and deaths prevented by different strategies for MenB vaccination of adolescents and young adults by age – United States

Age at MenB series	Cases Prevented	Deaths Prevented	NNV to prevent case	NNV to prevent death
11 yrs	15	2	203,000	1,512,000
16 yrs	28	5	107,000	788,000
18 yrs	29	5	102,000	638,000
College student	9	1	368,000	2,297,000

Abbreviations: MenB = meningococcal B vaccine; NNV = number needed to vaccinate; QALY = quality-adjusted life years

Sources: Unpublished data, ACIP meeting June 2015. Key model assumptions were presented at the June 2015 ACIP meeting. Methods described in Shepard CW, Ortega-Sanchez IR, Scott RD 2nd, Rosenstein NE. Cost-effectiveness of conjugate meningococcal vaccination strategies in the United States. Pediatrics 2005;115:1220-32.

What we know

- The vaccines appear safe and immunogenic.
- There is some effectiveness data from outbreak situations (Canada, Princeton)
- The vaccines received accelerated approval
 - Approval based on safety, immunogenicity
 - Serum bactericidal activity does have a correlate of protection
 - The serum bactericidal antibody (SBA) for licensure was done against representative strains of Serogroup B *Neisseria meningitidis*

What is still unknown

- We do not know how effective the vaccines will be against all the circulating strains
 - Not all strains have the proteins in the vaccines
 - Variable expression of the proteins
 - Will they mutate?
- We do not know the duration of antibody persistence
 - Current data suggests it is short-term
- We do not know the impact on carriage
- We do not know the potential impact on circulating strains
- There are no studies comparing the two vaccines

ACIP RECOMMENDATIONS FOR MENB VACCINES

ACIP recommendations for serogroup B meningococcal vaccines

- 2 Serogroup B meningococcal vaccines are licensed for persons 10-25 years of age
- Given the safety, immunogenicity and effectiveness data but also knowing the limitations of the data, recommendations are category B, permissive recommendations
 - Category A = for all persons in an age- or risk-factor group
 - Category B = for individual clinical decision-making

CDC recs on MenB vaccines

Clinical discretion:

- “Young adults aged 16 through 23 years (preferred age range is 16 through 18 years) may be vaccinated with either a 2-dose series of Bexsero or a 3-dose series of Trumenba vaccine to provide short-term protection against most strains of serogroup B meningococcal disease. The two MenB vaccines are not interchangeable; the same vaccine product must be used for all doses.”

CDC recs on MenB vaccines

For high-risk groups:

- “Persons 10 years or older who have not received a complete series. Administer a 2-dose series of Bexsero, at least 1 month apart. Or a 3-dose series of Trumenba, with the second dose at least 2 months after the first and the third dose at least 6 months after the first. The two MenB vaccines are not interchangeable; the same vaccine product must be used for all doses.”

QUESTIONS?